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I. INTRODUCTION

In the past decade, a large amount of research has been done in the
field of fatigue crack propagation (1-18). The concept of crack tip stress
field has been used to analyze experimental data (6). The stress intensity
factor range, AK, characterizes crack tip cyclic deformation and fatigue
crack propagation rate. Typical fatigue crack propagation data are shown in
Figure (la). The data can be divided into three regions. In the low AK
region, region I, the slope of the curve is more than four. As AK decreases,
da/dN decreases rapidly. The data seems to indicate the existence of a
limiting AK value for non-propagating crack. In the intermediate AK region,
region II, the slope of the line is close to two. The slope of the line in
the high AK region, region IIT, is equal to or higher than four. Additional
region II data are shown in Figure (1b). The slopes of the lines in this
figure are all close to two. Many theories have been proposed to explain
the characteristics of fatigue crack propagation data. In this study, the
application of AK to correlate fatigue crack propagation will be analyzed.
Some idealized conditions will be assumed in order to derive a functional
relationship between fatigue crack propagation rate and AK. The deviations
from the idealized assumptions will be examined and their effects on fatigue
crack growth analyzed. This study is not a comprehensive survey on fatigue
crack propagation. Only those results directly concerned with the applica-
tion of AK to analyze fatigue crack propagation will be analyzed.




II. A CRACK IN AN INFINITE PLATE UNDER A CYCLIC LOAD

When a cracked plate is loaded, the material near a crack tip undergoes
plastic deformation. TFor a small through crack in an infinite plate, if the
plate thickness does not affect the stresses and strains, the crack length,
2a, is the only characteristic length of the plate. The dimensional analysis
in the Appendix indicates that the stresses and strains at geometrically
similar points, i.e. at homologous points in geometrically similar solids,are
identical, if the solids are made of the same material with the same stresses
at homologous points on the boundaries. The displacements at homologous
points in these solids are linearly proportional to a. In other words, if
the geometrically similar solids are scaled by their only characteristic
length, a, after scaling, the stresses and strains at the same point of each
of these solids are identical.

When a very large plate with a through crack is cyclically loaded, the
material ahead of a crack tip undergoes repeated plastic deformation. VWhen
a material element is very close to a crack tip, the cyclic plastic strain
range experienced by the material element is high and the cyclic deformation
causes damage. If a material element is far away from a crack tip, the cyclic
plastic strain range is low, and the damage incurred to the material element
may be negligible.

In this section, a centrally cracked infinite plate with a constant cy-
clic applied stress range, Ao and a constant stress ratio, R = dmin/omax’

will be analyzed. Let 6a be a crack increment per cycle. If 8a is propor-
tional to a, according to the dimensional analysis, the stresses and strains
experienced by the material element within 6a must be the same regardless of
the length of the crack. If one assumes that the deformation and fracture
properties are homogeneous and that the stresses and strains experienced by
the material element cause crack propagation, one cannot but conclude that

da/aN = C, a (1a)

where Cl is a proportional constant. To include the effects of stress ratio,

one may write

da/dN = fl(R) a (1v)

where fl is a function of R. PFor a given value of R, fl is a constant.
If a material element is far away from a crack tip, the stresses and
strains are low, and the material element is not damaged by the cyclic
stresses and strains. When a material element enters the highly strained
region close to a crack tip, the cyclic strains cause damage. According to
the dimensional analysis, the size of the highly strained region must be



proportional to a. At wvarious stages of crack propagation, the stress and
strain cycles experienced by the material elements along the crack path must
be the same, if the values of (r/a) at these points are the same, and if the
crack propagates according to Equation (1). r is distance from the crack
tip. If Sa is proportional to a, the stress and strain cycles experienced
by the material element in 8a must be identical regardless of the crack
length. In this case, Equation (1) is valid, even if the past stress and
strain cycles experienced by a material element prior to its arrival at the
crack tip affect crack growth. This problem was first analyzed by Dugdale
et al. using an elastic model (2), and it was subsequently extended by Liu
to elasto-plastic solids (3).

Since the materials at homologous points experience the same stresses
and strains, the size of the plastic zone, rp, must be proportional to a.

Therefore, Equation (1) can also be written as

da/dN = C2 rp (2a)

or

da/aN = fE(R) T, (2b)

where C, is a proportional constant, and f, is a function of R.

2 2

In the derivations of Equations (1 and 2), two assumptions were made:
namely the crack length is the only characteristic length and the material
is homogeneous. The former condition is satisfied if the cracked plate is
thick enough so that the plane strain condition prevails. When a plate is
thin, necking occurs, and necking is strongly affected by plate thickness.
In this case, both crack length and plate thickness are important length
parameters that affect plastic deformation. The crack length alone cannot
be used to scale the geometry of a cracked plate. 1In other words, even when
da is proportional to a, the stresses and strains within Sa do not remain
the same, as the crack propagates. Therefore, Equations (1 and 2) are no
longer valid. The effects of plate thickness will be discussed in more de-
tail in Section IV.

In the derivations of Equations (1 and 2) we have assumed the homo-~
geneity of the deformation and fracture properties of the material elements
along the crack path. In other words, if the material elements have ex-
perienced identical stress and strain cycles, these elements will have the
same response to the same load during the next cycle. If the material
elements are not homogeneous, the deformations within the Sa's at various
stages of crack propagation may not be the same, even if the Sa's are pro-
portional to their respective crack lengths. Even if the deformation within
Sa's are the same, the fracture properties of these elements may differ, if



these  elements are not homogeneous. The condition of material homogeneity
assures that each crack increment, da, is proportional to a. When one
measures fatigue crack propagation rate, a crack increment of certain meas-
urable length, Aa, and its corresponding increment in load cycles, AN, are
measured. For the practical applications of Equations (1 and 2),only the
average deformation and fracture properties over the crack increment, Aa,
need to be homogeneous, provided that the characteristic lengths of the
discrete deformation and fracture processes are much smaller than da, so that
these processes can be treated as continuous. In the following discussions,
the conditions of homogeneous average properties and the continuous deforma-
tion and fracture processes over §a will be called the conditions of material
homogeneity. These conditions will be discussed in detail in Sections V and
VI.

According to the dimensional analysis in the Appendix, the stresses and
strains at homologous points in geometrically similar solids are identical,
if the boundary stresses are identical at geometrically similar regions on
the boundaries. Two opposite line wedge forces, F, acting at the mid-points
of the crack surfaces are shown in Figure (2). A line force F, can be con-
sidered as the total force given by a stress acting on a very narrow strip.

F = 1lim 0 AW (3)
AW-0

where AW is the width of the narrow strip. If crack length, a, is the only
length parameter, the width,AW, must be linearly proportional to a, in order
to maintain the condition that the boundary stresses are the same at homo-
logous points. Therefore, in order to maintain the condition that gives
rise to identical stresses and strains at homologous points, the line force
F must increase linearly with a. Therefore da/dN is proportional to a, if F
is kept proportional to a.

In the Appendix, the stress intensity factor of a cracked infinite plate
with two opposite wedge forces acting at the mid-pcints of the crack surfaces
is shown as

K = (L)

F
%
V a
where C., is a proportional constant. If the applied line forces are pro-

portional to a, the stress intensity factor is proportional to v¥a. In this
case, if da/dN is proportional to the square of the stress intensity factor

range, AK2, it must be proportional to a. Consequently, dimensional analy-
sis is applicable to the case of concentrated line force if appropriate
dimensionless parameters are chosen. If Equations (1 and 2) do not agree
with the experimental data, it is not because dimensional analysis is not
applicable to fatigue crack growth as claimed earlier (7). Rather, the
discrepancy is caused by the fact that one or more of the assumptions in the
derivations of Equations (1 and 2) are not satisfied.




Following the same analysis, Equations (1 and 2) can be shown applicable
to a penny shaped crack in an infinite solid under a uniform cyclic tensile
stress. Por two opposite point forces, F, applied at the centers of the cir-
cular crack surfaces, da/dN is proportional to a, if F is kept proportional

2
to a .



ITII. FATIGUE CRACK PROPAGATION RATE AND STRESS INTENSITY FACTOR RANGE

The application of stress intensity factor range to the analysis of
fatigue crack propagation rate is one of the most important contributions to
the study of fatigue in recent years (6,7). An overwhelming amount of data and
numerous models on the correlation of da/dN with AK exist. A general survey
was made by Paris and Jdohnson (18). This section presents a deductive ana-
lysis, which helps to interpret experimental data and aids in evaluating
various models of fatigue crack propagation.

The elastic stresses in a cracked plate can be expressed in terms of in-
finite series (19). Close to a crack tip, the elastic stresses can be ap-

proximated by (19,20)

Oy = K cos (6/2) [1 - sin (8/2) sin (36/2)]
21T
o =—£ cos (6/2) [1 + sin (8/2) sin (368/2)]
I \[27rr (
5)
g = K cos (6/2) sin (8/2) sin (36/2)
Xy 2mr
dzz = 0 for plane stress case
g =v (o +0 ) for plane strain case
72 xx vy

where r and 6 are polar coordinates, with the crack tip as the origin and the
crack lying along the line 6 = w, which coincides with the negative x-axis.
Equations (5) give good approximations of the elastic stresses, only if the
distance from the crack tip, r, is small enough. Let r, be the size of a

small region near a crack tip within which Equations (5) are valid. If a
material is elasto-plastic, the high stresses near a crack tip cause plastic
deformation. Therefore, a small region of plastic deformation, rp, exists

at the crack tip. Both T and r_are shown schematically in Figure (3).
When plastic deformation occurs Pyithin rp, the stresses in the vicinity of

the crack tip are relaxed. Because of the stress relaxation, the actual
stresses on r differ from the calculated elastic stresses by an amount 60.

8o varies along rp. It must be statically in equilibrium by itself. There-

fore, its resultant force and resultant moment must be zero. According to
Saint Venant's principle the change of the stresses on T, caused by the

stress relaxation 8¢, must be negligible, if re >> rn. If the relaxation

&

of the stresses on Ty is negligible, the stresses on r, are essentially



those given by Equations (5), and the value of K is sufficient to charac-
terize the stresses and strains within rp, even if plastic deformation takes

place. The condition, T, >> rp can be realized either if T, is very large
or if rp is very small. T, increases with specimen size and crack length.
rP is small if the yield strength of a material is high and the applied

stress is low.

When a cyclic load is applied, the cyclic stresses and cyclic strains
within rp must be prescribed by the stress intensity factor range, AK, and

the stress ratio R. The high strain gradient near a crack tip induces S,

O a and Gyz and their corresponding strain components. These stresses and

strains and their effects on other crack tip stress and strain components are
strongly affected by plate thickness. Crack tip deformation has been measured.
The results of these measurements clearly indicate that crack tip deformation
is affected by AK, R, and plate thickness (21). If fatigue crack propagation
is caused by the stresses and strains experienced by the material element at
the crack tip, one concludes that da/dN is a function of AK, R, and plate
thickness, i.e.

da/dN = f3 (AK, R, thickness) (6)

If a plate is thick enough, so that the state of plane strain prevails,
Equation (6) can be written as

da/aN = f) (AK', R) (1)

The functional relation between da/dN and AK, R, and plate thickness can be
found empirically. The thickness effect on da/dN has been observed (10).

The above conclusion is not subject to the limitations of "material
homogeneity'". It is valid even if the crack propagation mechanism is a
discrete process. Equations (6 and 7) were deduced from the simple assump-
tion that, with the same applied cyclic stresses on T the same events must

happen and da/dN must be the same. But it does not establish any functional
relation between da/dN and AK.

Next we want to deduce a specific relation between da/dN and AK for a
thick plate and for a material which is "homogeneous" in its deformation
and fracture properties. Let us examine the stresses and strains near the
crack tips in plates loaded to various AK values. The specimens are thick



enough so that the condition of plane strain prevails.Assume that the value of
R is the same for all the specimens. If the condition of r, >> r_ 1s satis-

fied in 811 cases and if we let r, be proportional to (AK)2, the stresses at
the homologous points on the boundaries of re's must be the same. If we
look at r, as isolated from the rest of a specimen, T, is the only length

parameter of the region of interest to us. Therefore, the regions near the
crack tips can be scaled by their respective re's. The dimensional analysis

in the Appendix concludes that the stresses and strains at the homologous
points within re's must be identical. Consequently rP must be proportional

to r . Under a cyclic load, rp for cyclic plastic deformation must be pro-

portional to AK2, and it must be related to the cyclic yield strength of a
material. If each crack increment 1is proportional to its rp, the cyclic

stresses and strains within every increment must be identical. If the con-
dition of material homogeneity is satisfied, one cannot but conclude:

da/dN

f5 (R) rp (8a)

or

da/DN = fg (R) AK® (8b)

Equation (8b) has been shown applicable to thick plates made of nineteen
materials (11,22). Some of the data are shown in Figure (1b).
The conditions that lead to Equations (8a and 8b) are r, >> T plane

strain state of stresses and strains, and material homogeneity. This first
condition is satisfied if rp is much smaller than the crack length and the

ligement size of a specimen or if the applied stresses are much lower than
the yield strength of a material. Both thickness effect and material homo-

geneity will be discussed in subsequent sections.



V. THICKNESS EFFECTS ON CRACK TIP DEFORMATION AND FATIGUE CRACK PROPAGATION

The conclusion that da/dN is proportional to a or rp is valid, if a two-
dimensional analysis is applicable to a cracked plate, so that a or rp is the

only relevent length parameter. Both plane stress and plane strain analyses
are frequently used for two-dimensional plate problems. If a plate is very
thick, plane strain analysis is applicable; and if a plate is very thin,

plane stress analysis is often used. In either model, one assumes that the
stresses and strains are independent of plate thickness. If plate thickness
affects the stresses and strains, a single length parameter such as a or rp

is not sufficient to characterize the state of stresses and strains near a
crack tip. The thickness parameter has to be taken into consideration. In
this case, Equations (1,2,7, and 8) are no longer valid.

The plane strain and plane stress analyses are idealized models. The
stresses and strains near a crack tip in a plate are much more complicated.
The high stresses near a crack tip cause plastic deformation. The plastic

Y P

strains €xx and € are very high near a crack tip. The condition of volume

i

constancy requires that e, = - (eix + P ).egz is the contraction of the

vy

plate thickness. A high strain gradient exists near a crack tip. A region
closer to a crack tip has higher strains and tends to contract more. But the
region is constrained from contraction by the region of lower strains farther
out. This constraint resists thickness contraction and induces the tensile
stress, S and the elastic tensile strain, sgz in the direction of the

plate thickness. In the interior of a very thick plate, the displacement in
the thickness direction is negligibly small, and the deformation approaches
that of plane strain. On the plate surface, stresses must be zero, there-
fore the conditions of plane stress prevail. For a thick plate, the state
of stresses and strains changes gradually from that of plane stress on the
surface to that of plane strain in the interior. This is true if the plas-
tic zone size is small relative to the plate thickness. It is also clear
that the rate of transition from the state of plane stress on the surface to
the state of plane strain in the interior depends on strain gradient. If
the gradient is high, the transition is fast, and if the gradient is low,
the transition is slow. If there is no strain gradient in the plane of a
plate, tensile stress in the plate thickness direction cannot be induced,
regardless of how thick the plate is. Clcse to a crack tip, the strain
gradient is steep and the rate of transition is fast. At a short distance
away from the plate surface the transition to the state of plane strain is
completed. As r increases, the strain gradient decreases, and the thickness
of the transition layer increases. Far away from a crack tip, the state of
stresses and strains throughout the plate thickness is essentially that of
plane stress.



A schematic picture of the plane strain plastic zone in a thick plate
near a crack tip is shown in Figure (4). The size of the plane strain zone
starts from zero on the plate surface and grows to the fully developed size
in the interior, if a plate is thick enough. In the interior of a thick
plate, the plane strain plastic zone, rpe’ coincides with rP. Close to the

plate surface rP becomes bigger, but rp€ becomes smaller. The length of the

fully developed plane strain region, n, relative to the size of the transi-
tion region, depends on the size of the plastic zone relative to the plate
thickness. n 1i1s longer for a thicker plate and a smaller rp. Within the

plane strain region, the maximum tensile stress is much higher than that in
the transition region. It should be pointed out that even if the conditions
of plane strain are satisfied within r in the transition layer, the

stresses and strains at a given distange r are not the same as those in the
interior of the specimen. This is obvious because the stresses Jjust outside
of r o are not the same in these two different regions. However, this dif-

ference decreases with r. At a short distance from a crack tip in a very
thick plate the stresses and strains along the entire crack front, except two
small regions near both ends, agree with that of a plane strain case. If the
stress and strain cycle at a crack front controls the rate of crack propaga-
tion, and if the condition of plane strain together with others are met,
Equations (1, 2, 7, and 8) are valid and applicsble to thick plates.

In the transition layer, rp is larger than rpe' A material element
reaches rp first,then it enters rpe. The material in the transition layer

experiences more cycles of plastic strain and the amplitudes of the strain
cycles are higher than those in the plane strain region. If the cyclic plas-
tiec deformation alone causes damage and crack propagation, da/dN in the
transition layer should be faster. On the other hand, the maximum tensile
stress in the plane strain region is much higher, therefore the material
there can sustain much less total cyclic plastic strain. This high tensile
stress in the plane strain region increases crack propagation rate. Appar-
ently, the high tensile stress in the plane strain region has a more dominant
effect on crack propagation rate. Consequently, the center portion of a crack
front propagates faster and it leads the two ends as shown schemcatically in
Figure (5). B is the difference in the crack lengths in the specimen in-
terior and the specimen surface. The curvature of the crack front in the
transition region causes an increase in the strain from that of a straight
crack front. This increase in strain increases da/dN in the transition re-
gion, so that the lag, 8, of the surface crack is reduced. If the lag is
small in comparison with the overall crack length, a, the measured crack pro-
pagation rate is essentially that in the interior of a specimen. If B is

linearly proportional to AK2, the measured da/dN differs from the rate in the
interior by a small constant factor. In either case, a plane strain analysis
is applicable to fatigue crack propagation, and Equations (1, 2, 7, and 8)

10




are valid for a thick plate. Clark and Trout (11) tested Ni-Mo-V alloy
steel at both T75°F and 0°F. As the specimen thickness increases from 1 inch
to 2 inches, the experimental data conform to Equation (8b).

When a plate is thin, plane stress anglysis is often used. When strain
is not excessive, a two-dimensional plane stress model can be a very good
approximetion. When strain exceeds certain limit, local necking takes place,
and the stresses and strains are functions of plate thickness and the co-
ordinate Z, which is normal to the plate. Consequently, a or r alone is not
sufficient to characterize the stresses and strains within the Phighly
strained region ahead of a crack tip. The assumption of geometric similitude
is no longer met, and the validity of Equations (1, 2, 7, and 8) has to be
examined. Both steep strain gradient and excessive local strain concentra-
tion shead of a crack tip enhance necking. Figure (6) shows a schematic dia-
grem of a necked region imbedded in a plastic zone.

After necking takes place, the materials above and below the narrow
strip deform very little. The opening displacement, v, and the length of
the strip necking region were calculated by Dugdale (23), Goodier and Fields
(24), Bilby, Cottrell, and Swinden (25) and Rice (26). In these calculations,
the overall crack length was assumed to be the sum of the length of the real
crack and the length of the strip necking region. On the surfaces of the
real crack, the stresses are zero. On the upper and the lower boundaries of
the strip necking region, a tensile stress equal to the yield strength of
the material, o,, is applied. Effectively, the model assumes an elastic and
perfectly plastic solid. Plastic deformation is restricted to the strip
necking zone, and the rest of the plate is elastic. The opening displacement
v is given Dby

oL sin2 (62 - 9) (sin 6, + sin 6)2
v(x,a) = —= [cos 6 log + cos 6, log 1
mE . 2 2 . . 2
sin (82 + 8) (sin 6, - sin 8)
2
(92a)
where
cos 62 = a/s (9b)
cos 6 = x/2 for fx' < g, and -1 <O <7 (9¢)
o, = no/on (94)

and a is the half crack length, and & is the sum of a and the length of the
strip necking zZone, rp. For small scale yielding

11



p = ﬂK2/8o§ (10)

At the crack tip, the relative opening displacement between the upper and the

lower crack surfaces is K2
§ =
o = Kp/Boy (11)

The opening displacements in a thin steel sheet were measured using moire
method (27). Figure (7) shows the picture of the moire pattern of a slotted
thin steel sheet under a tensile load. The steel sheet is 0.012 inches

thick and 6 inches wide. The slot is a one inch long jeweler's saw cut

0.007 inches wide. The region of strip necking at the end of the thin slot

is clearly visible. Both the calculated and measured opening displacements
are plotted in Figure (8). The measured and the calculated values at each end
of the slot show good agreement.

When necking takes place, shear deformation occurs on two mutually ortho-
gonal planes. Both planes are inclined at 45° to the axis of the tensile load
and to the plane of the plate. As slip takes place ,on these two planes, the
sheet thickness is reduced. Figure (9) is a schematic diagram showing the
opening displacements v, and the thickness contraction w. The thickness con-
traction in the strip necking region was measured with a microscope. The
microscope was first focussed on the specimen surface, then on the bottom of
the necking region. The reduction of the specimen thickness is the difference
of the readings on the micrometer, which is attached to the microscope for
focus adjustment. Because of the shallow depth of focussing at high magnifi-
cations, the thickness contraction can be measured accurately. Both opening
displacement and thickness contraction were measured after the specimen was
unloaded. The measurements are shown in Figure (10). The values of the thick-
ness contractions and opening displacements agree very well with each other.

The average contraction strain in the thickness direction, €, . within the
strip necking region is given by

€,, = 2w/t = =2v/t

where t is plate thickness. Assuming volume constancy and that € ex is neg-

ligible, together with the relation between X and v (26), we obtain

1+(1-x/r )l/2
eyy = (K2/EtGY) {(l—x/rp)l/2 - %—5—-log [ b

b 1-(1-x/r
P

1} (13)

]

)1/2

for small scale yielding, where rp is the length of the strip necking zone

given by Equation (10).

12



Therefore both the length of a strip necking region and the strain in the

region are proportional to K2. The necking model gives & strain which is
inversely proportional to t. The strain measurements made in the area close
to the strip necking zone indicate that plastic deformation spreads outside
of the necking zone. A more detailed discussion on the strain measurements
in the strip necking region was given in an earlier paper (27).

For small scale yielding in an elasto-plastic plate without necking, the
€ is linearly proportional to K. When necking takes place Eyy is propor-

tional to K2. As a crack propagates, K and rp increase. When rp is suf-
ficlently large, necking tskes place, and the rates of increases in rP and the

strains in the necking region become faster than those given by a two-
dimensional plane stress model. If crack growth is caused by cyclic deforma-
tion, da/dN should increase with a much faster rate after necking takes place.

If da/dN is expressed in terms of AKn, n should be larger than 2, and Equa-
tions (1, 2, 7 and 8) are no longer applicable. Liu (3) has suggested
earlier that a plane stress model is applicable to analyze fatigue crack
growth in thin plates. The above analysis and the empirical results clearly
indicate the contrary. Therefore we may conclude that Equations (1, 2, 7 and
8) are applicable only to thick plates when rp is small.

13



v. THE EFFECTS OF MATERTAL HOMOGENEITY

In the derivations of Equations (1, 2, and 8) the deformation and frac-
ture properties of a material were assumed to be homogeneous. The material
homogeneity does not mean that the stress strain characteristics are the
same throughout a specimen at any instant. It rather means that the material
will exhibit the same stress-strain characteristics, after experiencing the
same stress-strain history. The material near a crack tip having experienced
a number of high strain cycles will exhibit different stress-strain charac-
teristies from the material far away from a crack.

Real materials always contaln various types of inhomogeneity such as
point defects, dislocations, different phases of an alloy, grain boundaries,
etc. The processes of plastic deformation and fracture are inherently in-
homogeneous due to the fact that materials are discrete in nature rather
than continuous. Only the average properties over a large enough volume can
be considered as homogeneous.

The generation and the movement of dislocations cause plastic deforma-
tion. Figure (11) shows a glide lamella and slip steps caused by plastic
deformation of a single crystal. Extensive plastic deformation is concen-
trated in slip bands separated by undeformed lamella. The thjickness of an
undeformed packet in an aluminum single crystal is about 200 and the
height of the slip steps is about 2000A (28). When a crystal is not op-
timumly oriented for single slip, several slip systems will be activated
simultaneously. Multiple slips within a band have often been observed (29).
The spacings between slip bands decrease as strain Increases.

When a single crystal is cyclically deformed, subgrains are formed (30).
The size of the subgrain decreases as the cyclic strain amplitude increases.
A subgrain boundary consists of numerous dislocations. These dislocations
in a subgrain boundary must be generated by cyclic plastic deformation. All
of these studies indicate the inhomogeneous nature of plastic deformation,
i.e. extensive plastic deformation concentrates on certalin planes which are
separated by regions of little or no plastic deformation. Only the average
plastic deformation over a large enough volume can be considered as homo-
geneous.

Plastic deformation can cause the formation of microcracks. Stokes and

Li (31) nave found that microcracks in sodium chloride extend to form slits
along channels between slip bands. This is because a slip band resists
crack propagation across them but it enhances propagation parallel to them.
They found that local plastic constraint is the main factor responsible for
extending a surface microcrack. Parker (32) has observed that a crack was
nucleated in a MgO single crystal from the shears on two intersecting slip
bands. Cracking has been observed at a kink plane in zine (33). The crack
is caused by the splitting in two of & tilt boundary at the kink plane.
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Furthermore, the stresses and strains at the tip of a pile-up of dislocations
are equivalent to those of a crack (34,35). Stokes has shown that a crack can
be nucleated by a dislocation pile-up at a barrier (36). Hahn et al. (37)

have shown that local heterogeneous deformations, slip bands or twins, may pro-
vide constraint and cause cracking in polycrystal iron and steel. Ryder and
Smale (38) have shown that transcrystalline fractures of an aluminum alloy
containing 7.3% zinc and 2.6% magnesium are caused by the formation of lens-
shaped voids. These voids cause shallow depressions on a fracture surface.

At the center of a depression, a particle of compound often exists.

It has been shown by photomicrographs that fatigue fracture is initiated
at localized slip markings (39,40). As the number of cycles of load in-
creases, a slip marking develops into a surface crack. In 2024-Th aluminum
alloy, it has been found that concentrated slip occurs around inclusions (Lh1).
Cracks are eventually nucleated in the area of severe but localized slip.

The fractograph in Figure (12) shows the fracture surface of a cyclically
loaded specimen. The striations and the particle indicate the inhomogeneous
fracture properties of the material elements on the fracture surface.

Al]l of these studies indicate that fracture 1s a discrete process. The
fracture characteristics vary from one point to another in a solid. Only the
average fracture property, over a large enough volume to take care of the
statistical variation, is homogeneous. When one measures crack propagation
rate, a crack increment, Aa, and its corresponding increment in load cycles,
AN, are measured. Only the average properties of the increment Aa have to be
homogeneous.

When the characteristic length parameters of a particular kind of
material inhomogeneity are much smaller than a crack increment, §a, the
average properties of the material over §a can be considered as homogeneous.
For example, if the size and the spacing of microcracks, which are generated
by the cyclic plastic deformation, are much smaller than da, the average
effects of these microcracks on the deformation and fracture properties over
the area Sa can be considered as homogeneous. Therefore, the assumption of
material homogeneity is satisfied.

Commercial structural materials often contain regions of low fracture
strength such as the brittle particle in Figure (12). Often the percentage
of these low strength regions is low. When AK is low, the spacing between
the particles is much larger than da, and the path of the fatigue crack is
not disturbed by the particles. In this case, the effects of these particles
on fatigue crack propagation is negligible, and the material can be con-
sidered as "homogeneous".

On the other hand, the coherent precipitation particles in an aluminum
alloy are very small. At the optimum strength level its size is only a small
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fraction of a micro-inch. The strength of these particles could be either
stronger or weaker than the matrix. If a crack increment is several micro-
inches wide and each crack increment contains numerous particles, the material

can be considered as homogeneous.

Fatligue crack propasgation can be normal separation mode or shear separa-
tion mode. Microcracks, brittle particles, and triaxial state of stress en-
hance the normel separation mode. The ductility of a material in general
and the lack of microcracks, brittle particles and triaxial state of stress
enhance shear separation mode.

If r, >> r , if the plane strain condition prevails, and if the material
can be considerBd as homogeneous, at various stages of crack propagation, the
region ahead of a crack tip can be scaled by r_ so that at geometrically
similar points the past stress and strain histBries together with the present
deformation and fracture properties are the same. Therefore the extent of
crack growth by either normal or shear separation mode must be proportional
to the characteristic length rp. When the characteristic length of a dis-

crete deformation or fracture process, which is essential to the mechanism
of fatigue crack propagation, is comparable to da, the material can no

longer be treated as homogeneous, and the characteristic length has to be in-
cluded in an analysis. In the following section, a shear separation mode of
fatigue crack propagation will be illustrated and the effect of the charac-
teristic length of the discrete shear deformation process on fatigue crack
growth will be illustrated,
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VI. FATIGUE CRACK PROPAGATION - A MODEL OF SHEAR SEPARATION MODE

A crack can grow in a shear separation mode caused by slips on two sets
of orthogonal shear planes. TFigure (13a) shows a crack tip and its immediate
vieinity. On the plane of the crack, there is no shear stress, therefore the
shear planes for the state of plane strain deformation must be inclined 450
to the plane of the crack as shown in the figure. As discussed earlier,
shear deformation is not a homogeneous process. It concentrates on certain
slip planes, separated by regions of low or no deformation. Let us assume
that the shear lines in Figure (13a) are the shear planes. At first, the
shear line "o" is activated. The upper left hand side of the solid moves
in the direction of the shear line until the tip of the upper crack sur-
face reaches the shear line "b" as shown in Figure (13b). In this process,

a new segment of the crack surface is created along the shear line a. As

the load is further increased, the shear line "b" is activated, the lower

left hand side of the solid moves in the direction of the line "b". After
the shear movements on slip planes o and b, the new crack configuration is
shown in Figure (13c).

This process can be repeated successively along shear lines, £ and c.
After the shear deformations on the second set of shear planes, the crack tip
is advanced to a new position as shown in Figure (13d). After a great number
of shear lines are activated during the loading cycle, the crack profile at
the maximum load is given in Figure (13e).

When the specimen is unloaded the shear deformations along the shear
lines will be reversed. However the reversed shear deformation will be less
than the forward shear motion. Therefore the newly formed crack surfaces
will not grow backwards. This is obvicus if one considers a slip band as a
shear crack with internal frictional shear stress acting on the crack sur-
faces. An elastic crack is shown in Figure (1ka). When the specimen is
loaded, a shear step is formed as shown in Figure (1l4b). If there is no
frictional shear stress on the crack surfaces, upon unloading, the shear
step will disappear and the specimen is reverted to its original shape as
shown in Figure (1llba). If a frictional shear stress exists between the crack
surfaces, upon unloading, the shear step will be reduced but it does not dis-
appear entirely as shown in Figure (1lhkc). The slip bands are equivalent to
shear cracks with frictional shear stress between crack surfaces. Closer to
the new crack tip, the percent of the shear deformation recovered during the
unloading cycle would be higher. Therefore upon unloading, the crack profile
is given in Figure (13f).

In the process of the shear separation mode of crack growth, the plastic
deformation is not limited to a narrow strip such as suggested by Dugdale
model (23). Therefore the opening displacement at a crack tip will be much
less than that given by the Dugdale model. Nevertheless if the area ahead
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of the crack tip can be scaled by rp so that as a crack propsgates the con-
dition of geometric similitude is maintained, the crack tip opening dis-

2
placement is proportional to rP and AK . Therefore da/dN is proportional to

AK2.

When the spacings between the neighboring activated shear lines are much
smaller than the crack increment Sda, the deformation can be considered as
"continuous" and +the average deformation property over 8a is homogeneous.

In this case, Equations(l, 2, and 8) are valid.

The region II data in Figure (1) substantiates the validity of Equation
(8b). 1In region I of the figure, Equation (8b) is not wvalid, but Equation
(6) or (7) is applicable. In this region, both AK and da/dN are low. The
slope of the curve in this region is often equal to or more than 4. The
transition from region I to region II often takes place in the da/dN range
of 1 to 5 u in/cycle. This transition point is approximately equal to the
thickness of the undeformed packet as shown in Figure (11). This thickness
could be the separation of the neighboring shear lines of the shear separa-
tion mode of fatigue crack propagation as shown in Figure (13). If the
crack growth rate is less than the separation between neighboring shear lines,
the shear step on the shear line o in Figure (13a) does not reach the shear
line b. Upon unloading, the length of the shear step will be reduced by the
reversed shear flow. Thus, the crack growth rate is much less. This may
account for the sharp drop in da/dN as AK is reduced to below the transition
point. Therefore in region I, the discrete nature of shear deformation has
to be taken into consideration, and the material cannot be considered as
homogeneous. Consequently the assumption of material homogeneity in the
derivations of Equations (1, 2, and 8) is no longer valid, and the experi-
mental data indicate that the equations are not applicable in region I.

Commercial structural metals are polycrystals. The grain orientation
varies from one to the next. Because of the complicated multiaxial crack
tip stress field, it is most likely that several slip systems are activated.
The macroscopic plastic deformation is the result of dislocation movements
on these slip systems, and the anisotropic effects of grain orientation are
"smoothed" out. For an isotropic solid, the slip lines are inclined 45° to
the plane of the crack. The anisotropic deformation property of a crystal
changes the angle of inclination. We have discussed shear and normal separa-
tion modes separately, but fatigue crack propagation is most likely the re-
sult of the combination of both.
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VII. DISCUSSIONS

Fatigue crack propagation can be analyzed in terms of energies or plas-
tic deformation. Paris (8) and Roney (17) relate fatigue crack propagation
rate to plastic deformation energy near a crack tip. Energy criterion has
been widely used to analyze physical phenomena. Often two energy quantities
are involved in such analyses. For example, the elastic energy released by
a cracked solid and the energy of the newly formed crack surfaces were used
by Griffith to analyze brittle fractures., Such an analysis involving two
energy quantities gives a good insight into the physical problem.

The alternative to an energy analysis is to study the effects of crack
tip deformation on fatigue crack propagation. Both crack tip opening dis-
placement and near tip strain have been used to analyze fatigue crack growth.
The experimental data on crack tip deformation strongly suggest that the
Dugdale model is applicable only to the case of crack tip necking. Necking
takes place only when a plate is thin and the plastic zone is large enough
to cause slips on two mutually perpendicular shear planes as shown in Figure
(9). Therefore Dugdale model is not applicable to calculate the crack tip
opening displacement in a plane strain case in a thick plate. However, a
simple dimensional analysis indicates that the crack tip opening displacement

is proportional to AK2 for small scale yielding.

Two major objectives of fatigue crack propagation investigations are to
collect data for engineering designs and safety inspections and to analyze
the material property with the purpose of improving the resistance of a
material to fatigue crack propagation. If one's primary objective is to
collect data for designs and safety inspections, one can fit the data well to
an empirical equation, which contains enough parameters; then use the equa-
tion to achieve its engineering objectives. The specific form of the equa-
tion and the specific physical model for fatigue crack propagation are not
important. On the other hand, if the main objectives are to evaluate and to
improve materials, the physical model and the form of an equation become
important.

The data in region I and region II are more meaningful for the evaluation
of the resistance of a material to fatigue crack propagation. The data in
region III is complicated by crack tip necking. In the necking region, the
effects of the material properties are mixed with the complicated plastic
deformation pattern at a crack tip. In conclusion, one should use a thick
specimen for material evaluation so that plane strain case is insured.

If the deformation and fracture properties of & material can be con-
sidered homogeneous, if the condition of plane strain is satisfied, and if,

r >> r , we have
€ Y
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da/aN = fe (R) AK2 (8b)

This relation is wvalid for both shear and/or normal separation mode. It
should be emphasized that this relation is not the general law of fatigue
crack propagation. But if the above mentioned conditions are all satisfied,
this relation has to be correct. Any experimental data that deviates from
this relation must be caused by the fact that one or more of these conditions
are not complied with. Therefore this analysis helps one to analyze and to
evaluate experimental data.

For a particular physical model of fatigue crack propagation, based on
either shear or normal separation mode, if one uses a two-dimensional model
to analyze fatigue crack propagation in the low AK region, and if one assumes
material homogeneity, the mere fact that the data show a relation of the type
of Equation (8b) does not offer any verification of the specific model. For
example Lehr and Liu (4) have proposed a mechanical model of fatigue crack
propagation. They assumed that a material element ahead of a crack tip is
damaged by cyclic plastic strain. They used Manson-Coffin's strain con-
trolled fatigue law and Miner's cumulative damage law to derive an equation
for fatigue crack propagation.

da/an = C, [AK/OY(C)]2 [E:Y(c)/M]2 (1k)

where Ch is a constant, 0Y<C) and € (¢) are cyclic yield stress and cyclic

Y(e

yield strain and M is the strain range at a cyclic fatigue life of one cycle
for a smooth specimen. In the derivation, a two-dimensional model was used
and material homogeneity and the condition that r. >> rp were assumed.

Therefore the mere fact that the data is proportional to AK2 does not verify
the proposed cumulative damage model. The model can be verified only if &ll
the material constants, AK, and da/dN agree with the equation.

It should be recognized that the analysis is based on an elasto-plastic
model. This analysis does not take rate sensitive materials into considera-
tion nor any crack growth mechanisms that are rate sensitive. The analyses
on crack growths in viscoelastic materials and the diffusion controlled and
chemical reaction rate controlled crack growth mechanisms have yet to be done.
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VIII. CONCLUSIONS

1.

n_n

At a constant value of R, da/dN is proportional to "a" if a plate
is large and thick, if the average deformation and fracture pro-
perties over the crack increment, Aa, are homogeneous, and if the
characteristic discrete lengths of the deformation and fracture
processes are smaller than the crack increment per cycle, Sa. The
last two conditions are referred to as the conditions of "material
homogeneity"”. The condition r, >> rp is not necessary.

da/dN is a function of AK and R, if a plate is thick enough so that
plane strain condition prevails and if the applied stress is low in
comparison with the yield strength. The conditions of "material
homogeneity" are not necessary.

da/dN is proportional to AK2 at a given value of R, if a plate is
thick enough, if the applied stress is low in comparison with the
yield strength, and 1f the conditions of homogeneity are satisfied.
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APPENDIX: DIMENSIONAL ANALYSIS ON THE ELASTO-PLASTIC STRESSES AND STRAINS
AT HOMOLOGQOUS POINTS OF GEOMETRICALLY SIMILAR SOLIDS AND CRACKED
PLATES

The 7 theorem is often used to make dimensional analysis (42) Accord-
ing to this theorem, several independent dimensionless parameters are formed
to correlate experimental data. A correct choice of a set of dimensionless
parameters gives a meaningful empirical correlation. On the other hand,

a wrong choice of the parameters may lead to erroneous conclusions. This
difficulty can be avoided if the basic physical laws of a problem are known
and can be written in mathematical equations. These equations help to choose
a set of meaningful dimensionless parameters. In this study, the geometri-
cally similar solids made of the same material will be analyzed. For such
solids, thelr geometric shapes are the same. The only difference is in their
sizes. The size of such a solid can be specified by a characteristic length,
L. The set of equations that govern the stresses and strains in these

solids can be written as follows:

—1J _ 9 (a1)

€i5,68 T %xe,i5 T Cik,32 T S30,ik - O (a2)
_ l-[BUl 2, BU BUk] -
i3 - 2 3%, 5X. T 3X. 9X.
J i 3
33, 4
S..do .
1j eff i
de.. = — + (AL)
1j 20eff H 2G
_ (1-2v)
degy =7 g 494 (45)
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where Gij and eij are stress and strain tensors; Sij and eij are deviatoric
]

stress and strain tensors; ¢ is effective stress; H is the slope of the

eff
effective stress plastic strain curve; E, G, and v are Young's modulus, shear
modulus and Poisson's ratio respectively; and Ui and Xi are dimensionless

displacement vector and the coordinates which are defined as

Uy
Ui = I (a6)
and
*5
Xi =1 (AT)

u, and x, are displacement vector and the coordinate system. The summation

convention of index notation is used; and the comma between indices denotes
differentiation. For detailed discussions on the index notation, readers
are referred to Reference (43). If the geometrically similar solids are
scaled by their respective L's, the geometry of the solids in the Xi space

are identical. These equations indicate clearly that with the same applied
stresses on the boundaries, specified in terms of Xi’ the stresses and

strains at homologous points, Xi’ i.e. at geometrically similar points, must

be identical.

The above conclusion is valid for geometrically similar elasto-plastic
solids under the same stress boundary conditions at geometrically similar
points’on the boundaries. A concentrated force F., on a boundary can be
treated as a very high stress m acting on a small area AA. That is

1

lim v
Fi = A > 0 Ti AA (A8)

For a concentrated line force acting on the boundary of a plate, the con-
dition of identical boundary stress at the geometrically similar points re-
quires that the force is linearly proportional to the size of the plate, in
order to have identical stresses and strains at homologous points in geo-
metrically similar solids.

The preceding condition imposed on the line force of two-dimensional

problems can be illustrated by the elastic calculation of the stresses in
the vieinity of a crack tip in a centrally cracked infinite plate with two
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opposite wedge forces acting at the mid-points of the cracked surfaces as
shown schematically in Figure (2).

lim o
AA > O

F AA
(A9)

lim
= AW 0 ot AW
where W is the width of the narrow strip of the area on which the concentrated
force is acting and t is the thickness of the plate. The stresses in the
vicinity of the crack tip are proportional to the applied stress, o, and the
characteristic crack tip stress singularity,J a/o1r. Therefore the stresses
in the viecinity of the crack point can be written as

a
o.,. = — .. (B
15 = Cg 0 [ oo £y (8) (A10)

Substituting (A9) into (Al10), one obtains

F a
0., = — 2_r _ (8
iJ C6 AW oxr 1J (e) (A11)

where C_. and C6 are constants. The condition of similarity requires that

5

AW is proportional to the crack gength, a. Hence

0., = Cy ———g,, (6) (a12)
J 2nra

where C3 is a proportional constant. The elastic calculation indicates that

= —L 4., (0) (A13)

O. .
T e U

The constant C3 in Equation (Al2) is equal to Jajn. It should be noticed

that the above discussion on the stress intensity factor is for an elastic
cracked plate. Our earlier conclusion for geometrically similar solids is
valid for genersal elasto-plastic solids. The elastic example is only a
special case.

The above conclusions are valid for problems which have only one charac-
teristic length. For problems involving more than one quantity with linear
dimension, such as thickness, grain size, lattice spacing etc., the above
deductlons are no longer wvalid.
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FIGURE (1b) FATIGUE-CRACK-PROPAGATION DATA FOR HIGH STRENGTH STEELS.(Ref.22)



FIGURE (2) A CRACK IN AN INFINITE PLATE WITH TWO WEDGE FORCES.

Y
fe
NP
CRACK N X

FIGURE (3) SCHEMATIC REPRESENTATION OF r, AND rP NEAR A CRACK TIP.
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FIGURE (k)

SCHEMATIC DIAGRAM SHOWING THE PLASTIC ZONE.

ONLY HALF OF THE

ZONE IS SHOWN. THE PLANE STRAIN PLASTIC ZONE IS IMBEDDED.

(Courtesy Mr. W. L. Hu)



THICKNESS

.
NN

FIGURE (5) A TWO-DIMENSIONAL SCHEMATIC FIGURE OF A CRACK FRONT.

CRACK ELASTIC

PLASTIC

*i

NECKING

FPIGURE (6) A STRIP NECKING ZONE IMBEDDED IN A PLASTIC REGION.
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FIGURE (T7)

MOIRE PATTERN OF A STEEL SPECIMEN:

APPLIED STRESS 55 KSI;
0.2% OFFSET YIELD STRESS 91 KSI; YOUNG'S MODULUS

32 X 106 PSI; 0.012 INCHES THICK; 6 INCHES WIDE; SLOT

LENGTH 1 INCH; PITCH OF MOIRE GRILLE 1/13,400 INCHES.



515

! ! | | | { ! | i J ! ' P! i

{
: ——— CALCULATED
, JO/;—:O%, —— MEASURED

i / ‘ CRACK LENGTH N \ ]
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DISTANCE FROM THE CENTER LINE OF THE SPECIMEN (INCH)

OPENING DISPLACEMENT-v x 103(INCH)

FIGURE (8) OPENING DISPLACEMENT ALONG CRACK LINE: o, 55 KSI; Tys 91 KSI: E, 32 X 106 PSI;

THICKNESS, 0.012 INCHES; WIDTH, 6 INCHES; SLOT LENGTH, 1.0 INCH.
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MEASURZD AFTER UNLOADING

e HALF THICKNESS REDUCTION
O OPENING DISPLACEMENT

(x 109 INCH)

D

HALF THICKNESS REDUCTION
OPENING DISPLACEMENT

l I l
o 0.1 0.2 0.3 0.4

DISTANCE FROM CRACK TIP (INCH)

FIGURE (10) HALF OF THICKNESS REDUCTION AND OPENING DISPLACEMENT IN THE
NECKING REGION OF A STEEL SHEET: o 62 KSI; Oy 91 KST;

E, 32 X 106 PSI: THICKNESS 0.012 INCHES: WIDTH, 6 INCHES;

SLOT LENGTH 1.0 INCH.
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FIGURE (12)

FIGURE (11) A GLIDE LAMELLA.

CLEAVAGE FRACTURE, SHEAR STEPS AND STRTATIONS.




B
7é
(a) 9 (¢)
(o
b
& a
d a
ﬁg?’
3
d (b) (d)
c
b

{e)

g S

FIGURE (13) SUCCESSIVE DISCRETE SHEAR SEPARATIONS CAUSE CRACK TIP OPENING.

(a), (b), (c), (d) SHEAR SEPARATION MOVEMENTS ALONG SLIP LINES
DURING THE LOADING CYCLE.

(e) CRACK OPENING AT MAXIMUM LOAD.
(f) CRACK PROFILE UPON UNLOADING. .
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o

FIGURE (14) THE SLIP STEP OF A SHEAR CRACK UNDER COMPRESSION WITH FRICTIONAL SHEAR

STRESS BETWEEN CRACK SURFACES (a) BEFORE LOADING (b) AT MAXIMUM COM-
PRESSION (c¢) UPON UNLOADING.



